166 research outputs found

    Lipid droplets: A dynamic organelle moves into focus.

    Get PDF
    Lipid droplets (LDs) were perceived as static storage deposits, which passively participate in the energy homeostasis of both cells and entire organisms. However, this view has changed recently after the realization of a complex and highly dynamic LD proteome. The proteome contains key components of the fat mobilization system and proteins that suggest LD interactions with a variety of cell organelles, including the endoplasmic reticulum, mitochondria and peroxisomes. The study of LD cell biology, including cross-talk with other organelles, the trafficking of LDs in the cell and regulatory events involving the LD coat proteins is now on the verge of leaving its infancy and unfolds that LDs are highly dynamic cellular organelles

    The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage.

    Get PDF
    Lipid droplets (LDs) are specialized cell organelles for the storage of energy-rich lipids. Although lipid storage is a conserved feature of all cells and organisms, little is known about fundamental aspects of the cell biology of LDs, including their biogenesis, structural assembly and subcellular positioning, and the regulation of organismic energy homeostasis. We identified a novel LD-associated protein family, represented by the Drosophila protein CG9186 and its murine homolog MGI:1916082. In the absence of LDs, both proteins localize at the endoplasmic reticulum (ER). Upon lipid storage induction, they translocate to LDs using an evolutionarily conserved targeting mechanism that acts through a 60-amino-acid targeting motif in the center of the CG9186 protein. Overexpression of CG9186, and MGI: 1916082, causes clustering of LDs in both tissue culture and salivary gland cells, whereas RNAi knockdown of CG9186 results in a reduction of LDs. Organismal RNAi knockdown of CG9186 results in a reduction in lipid storage levels of the fly. The results indicate that we identified the first members of a novel and evolutionarily conserved family of lipid storage regulators, which are also required to properly position LDs within cells

    Organisation, regulations, preparation and logistics of parenteral nutrition in hospitals and homes; the role of the nutrition support team – Guidelines on Parenteral Nutrition, Chapter 8

    Get PDF
    PN (parenteral nutrition) should be standardised to ensure quality and to reduce complications, and it should be carried out in consultation with a specialised nutrition support team whenever possible. Interdisciplinary nutrition support teams should be established in all hospitals because effectiveness and efficiency in the implementation of PN are increased. The tasks of the team include improvements of quality of care as well as enhancing the benefit to cost ratio. Therapeutic decisions must be taken by attending physicians, who should collaborate with the nutrition support team. “All-in-One” bags are generally preferred for PN in hospitals and may be industrially manufactured, industrially manufactured with the necessity to add micronutrients, or be prepared “on-demand” within or outside the hospital according to a standardised or individual composition and under consideration of sterile and aseptic conditions. A standardised procedure should be established for introduction and advancement of enteral or oral nutrition. Home PN may be indicated if the expected duration of when PN exceeds 4 weeks. Home PN is a well established method for providing long-term PN, which should be indicated by the attending physician and be reviewed by the nutrition support team. The care of home PN patients should be standardised whenever possible. The indication for home PN should be regularly reviewed during the course of PN

    Access technique and its problems in parenteral nutrition – Guidelines on Parenteral Nutrition, Chapter 9

    Get PDF
    Catheter type, access technique, and the catheter position should be selected considering to the anticipated duration of PN aiming at the lowest complication risks (infectious and non-infectious). Long-term (>7–10 days) parenteral nutrition (PN) requires central venous access whereas for PN <3 weeks percutaneously inserted catheters and for PN >3 weeks subcutaneous tunnelled catheters or port systems are appropriate. CVC (central venous catheter) should be flushed with isotonic NaCl solution before and after PN application and during CVC occlusions. Strict indications are required for central venous access placement and the catheter should be removed as soon as possible if not required any more. Blood samples should not to be taken from the CVC. If catheter infection is suspected, peripheral blood-culture samples and culture samples from each catheter lumen should be taken simultaneously. Removal of the CVC should be carried out immediately if there are pronounced signs of local infection at the insertion site and/or clinical suspicion of catheter-induced sepsis. In case PN is indicated for a short period (max. 7–10 days), a peripheral venous access can be used if no hyperosmolar solutions (>800 mosm/L) or solutions with a high titration acidity or alkalinity are used. A peripheral venous catheter (PVC) can remain in situ for as long as it is clinically required unless there are signs of inflammation at the insertion site

    A Bayesian approach to modelling heterogeneous calcium responses in cell populations

    Get PDF
    Calcium responses have been observed as spikes of the whole-cell calcium concentration in numerous cell types and are essential for translating extracellular stimuli into cellular responses. While there are several suggestions for how this encoding is achieved, we still lack a comprehensive theory. To achieve this goal it is necessary to reliably predict the temporal evolution of calcium spike sequences for a given stimulus. Here, we propose a modelling framework that allows us to quantitatively describe the timing of calcium spikes. Using a Bayesian approach, we show that Gaussian processes model calcium spike rates with high fidelity and perform better than standard tools such as peri-stimulus time histograms and kernel smoothing. We employ our modelling concept to analyse calcium spike sequences from dynamically-stimulated HEK293T cells. Under these conditions, different cells often experience diverse stimuli time courses, which is a situation likely to occur in vivo. This single cell variability and the concomitant small number of calcium spikes per cell pose a significant modelling challenge, but we demonstrate that Gaussian processes can successfully describe calcium spike rates in these circumstances. Our results therefore pave the way towards a statistical description of heterogeneous calcium oscillations in a dynamic environmen

    Not Available

    Get PDF
    Not AvailableAim: This study was conducted to find out the relationship of prepartum udder and teat measurements with subsequent milk production traits in primiparous Nili-Ravi buffaloes. Materials and Methods: A total of 12 Nili-Ravi buffalo heifers were selected from Buffalo Farm, Central Institute for Research on Buffaloes, Regional Station- Bir Dosanjh, Nabha, Patiala, Punjab. The udder length (UL), udder width (UW), udder depth, teat length (TL), teat diameter (TD), and teat distances were measured at fortnightly interval from 60 days prepartum until calving. After calving, 60 days total milk yield (TDMY), peak yield (PY), and days taken to attain PY (DPY) were also recorded. The correlation coefficients of various prepartum udder and teat measurements since 60 days prepartum to calving with 60 days TDMY, PY, and DPY were calculated to find out the relationship between the traits in primiparous Nili-Ravi buffaloes. Results: The result envisaged that all udder and teat measurements were increased gradually toward the date of calving in primiparous buffaloes. The UL, UW, left fore (LF) and right rear (RR)TL, RRTD, and the distance between LF to left rear (LR) teat were positively correlated with 60 days TDMY. The UL and UW depicted positive but nonsignificant correlation with PY. Fore TLs showed positive correlation where as TDs and teat distances had a negative correlation with the DPY in primiparous Nili-Ravi buffaloes. Conclusion: It was concluded that milk production performance could be assessed on the basis of prepartum udder and teat measurements in primiparous Nili-Ravi buffaloes.Not Availabl

    Sign changes as a universal concept in first-passage-time calculations

    Get PDF
    First-passage-time problems are ubiquitous across many fields of study including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time distributions for the wide class of non-differentiable Gaussian processes. We demonstrate that the concept of sign changes naturally generalises the common practice of counting crossings to determine first-passage events. Our method works across a wide range of time-dependent boundaries and noise strengths thus alleviating common hurdles in first-passage-time calculations

    A Flexible LDPC/Turbo Decoder Architecture

    Get PDF
    Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP) algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or 450 Mbps Turbo decoding.NokiaNokia Siemens Networks (NSN)XilinxTexas InstrumentsNational Science Foundatio
    • …
    corecore